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COMMENT 

On the percolation threshold for a &dimensional simple 
hypercubic lattice 

D S Gaunt and R Brak 
Department of Physics, King’s College, Strand, London WC2R 2LS, UK 

Received 26 January 1984 

Abstract. We use l/u-expansions (u= 2d- 1 )  to investigate systematically a number of 
conjectures and approximations for the bond and site percolation thresholds of a d- 
dimensional simple hypercubic lattice. The technique provides convincing evidence that 
none of the conjectures are correct and gives a quantitative understanding of the quality 
of the approximations. 

Bond and/or site percolation thresholds pc have been calculated rigorously (Kesten 
1980, 1982, Wierman 1981) for some two-dimensional planar lattices and conjectured 
(e.g. Tsallis 1982) for several others. The critical exponents for percolation in d = 2 
dimensions have been conjectured by den Nijs (1979), Pearson (1980) and Nienhuis 
et a1 (1980) and are supported by a considerable body of numerical and theoretical 
evidence. They are widely believed to be exact, the evidence being conveniently 
summarised in the review by Sahimi (1983). 

Recently, a number of workers, encouraged perhaps by the apparent success of 
the above conjectures, have tried to conjecture the exact percolation threshold for 
lattices with d 2 3. In this comment we propose a simple method for checking such 
conjectures and find compelling evidence that none of them are exact. In addition, the 
method enables us to understand in a quantitative way why sometimes the approxima- 
tion is rather good even though the conjecture is not correct. The technique involves 
expanding the conjectured expression for pc in inverse powers of a where (+ = q - 1. 
(For a simple hypercubic lattice, the coordination number q = 2d.) This expansion 
may then be compared with either the expansion of Gaunt et a1 (1976) for site 
percolation, 

(1) p:s) = (+-I + it a-2 + 3: + 20: + , . , , 
or that of Gaunt and Ruskin (1978) for bond percolation 

p:B)=a-1+21a-3+7ta-4+57a-5+. , . .  
These results are expected to coincide with the exact 1/ a-expansions for pc-assuming 
their existence-since their derivation, although not rigorous, is formally exact. 
(Rigorous evidence for the existence of l/a-expansions exists for the spherical model 
(Gerber and Fisher 1974), the self-avoiding walk problem (Kesten 1964) and for 
directed bond percolation (Cox and Durret 1983).) As expected, the first-order term 
in (1) and (2) gives the correct limiting ( d  -$ CO) behaviour as given by the Bethe 
approximation. The expansions are probably asymptotic, although it is only for the 
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spherical model that the analogous statement has been proven rigorously (Gerber and 
Fisher 1974). 

The basic idea of comparing l/u-expansions is not new. It has been used both for 
demonstrating likely equality (Whittington et a1 1983, Gaunt et a1 1984) and for 
suggesting strict inequalities (Gaunt and Ruskin 1978, Gaunt et a1 1982,1984) between 
various critical points arising in the study of percolation, self-avoiding and neighbour- 
avoiding walks, lattice trees, lattice trees with specified topologies, unrestricted lattice 
animals and lattice animals with a prescribed number of cycles. Harris (1983) has 
used the idea to demonstrate the falsity of a conjecture concerning ~ : ~ ’ ( d )  due to 
Sahimi er a1 (1983) and here we apply it to the investigation of a range of conjectures 
and approximations to  pc (denoted by $J. 

We begin by considering the conjecture of Sahimi et a1 (1983) and make a number 
of points not considered in the analysis of Harris (1983). Explicitly, Sahimi et a1 
conjecture, on the basis of numerical evidence, that 

8s”’ = Go (3) 
may be exact for three- and higher-dimensional Bravais lattices. The quantity Go is a 
lattice Green function important in the theory of random lattice walks. From the work 
of Montroll (1956), it follows that (3) may be written as 

85“’ = G, = q-l( 1 -f)-’ = q-lF (4) 

where f = 1 -F-’ is the probability of eventual return to the origin. Asymptotic 
expansions in inverse powers of q for both f and F are given by Montrollt through 
O(q-5) .  Substituting either of these expansions into (4) and then re-expanding in 
powers of 1/u gives 

~:B)=u-’+2u-3+5u-4+27u-5+149u-6+. , . . ( 5 )  

This result should be compared with the presumably exact expansion given in (2). 
The first-order term in (5) gives the correct limiting behaviour; also (5) has no cr-’ 
term in agreement with (2). However, differences in the magnitudes of the coefficients 
appear at O(f3)  and increase with the order of the term. We find 

. . . .  (6) 
Clearly the conjecture (3) of Sahimi et a1 can only be an approximation. This conclusion 
was also reached by Harris (1983) who derived the leading term in (6) and also by 
Wilke (1983). Wilke simply compared his rather precise Monte Carlo estimate of 
pi”’ = 0.2492 * 0.0002 for the simple cubic lattice with the conjectured value of Go = 
0.252 731 . . . (Montroll 1956). The expansion (6) suggests (but does not prove) that 
pLB’> Go for suficiently large d. Evidently the inequality just fails for d = 3, while for 
d = 2 it is clearly violated since ~ 2 ~ ’  = $ and Go is infinite. However, the inequality 
appears to be satisfied for d = 4, 5, 6 and 7 (and presumably larger d) by the series 
estimates of pc tabulated by Gaunt and Ruskin (1978). 

In view of the above remarks it is most unlikely that the conjecture (3) is exact 
for any of the other three-dimensional Bravais lattices considered by Sahimi et a1 
(1983). 

The following question was raised by Sahimi et al:  if the conjecture is not correct, 
why does the approximation appear to be so good? From (6) and (2), one sees that 

p:B) - fi:B) = i (+-3 + 2: (+-4 + 30u-5 + 

t There is an error in the expansion for F. The last coefficient quoted should read I N 7 1  ) / 2 q 5  
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for large d the relative percentage error ( ~ : ~ ' - f i : ~ ) ) / p : ~ ) = =  5 0 f 2 .  At the upper critical 
dimension dc , ,=6 ,  this has decreased to about 0.4% which is comparable to the 
uncertainty in the best numerical estimate of p p '  (Gaunt and Ruskin 1978). 

We turn our attention now to two older approximations. The single-bond effective 
medium approximation (Kirkpatrick 1973) provides physical motivation for the 
formula 

fic" = 2/ q. (7) 

i:B) = 2a-1 - 2(+-2+ 2a-3 (8)  

Expanding in powers of l /a  gives the (convergent) expansion 

. . . , 
the leading term of which does not even give the correct limiting ( d  + m) behaviour. 

An empirical formula due to Vyssotsky et a1 (1961), 

f iSB'= d ( d -  l)-'q-', (9) 
which reduces to (7) when d = 2, takes the form 

8:") = 4 ( d -  

for a d-dimensional simple hypercubic lattice. This form of the approximation has 
also been discussed more recently by Kirkpatrick (1979) and by Chao (1982). From 
(10) we obtain the (convergent) expansion 

. . .  (11) fi2B) = (+-I + (+-z  + (+-3 + (+-4 + 

which has the correct dominant behaviour but whose leading correction term is of the 
wrong order. 

Besides their simplicity the main advantage of approximations such as (7) and (10) 
seems to be the fact that they give good results for small d. For example, (7) gives 
the exact results for d = 1 and the d = 2 square lattice, while (10) is exact for d = 2 
and provides a rather good approximation for d = 3 (Wilke 1983). 

Very recent work, which also gives good results for small d, is due to Hajdukovic 
(1983). This approximation gives an explicit expression for the critical point Kc( d, s) 
of the s-state Potts model on a simple hypercubic lattice for arbitrary d. For the bond 
percolation (s + 1) problem (Kasteleyn and Fortuin 1969, Wu 1978), the conjecture is 

(12) 62B)  = 1 -e-f?c(d, 1) = 1 -2-2/d(d-1) 

For d = 1 and 2 this yields the exact results but, as pointed out by Wu (1984), the 
prediction of = 1 - T''~ = 0.206 299 . . . for the simple cubic lattice (d  = 3) differs 
appreciably from the best numerical estimates. The validity of the conjecture for 
general s and d is, therefore, clearly suspect. To confirm this suspicion we simply 
expand (1 2) giving 

~ ~ B ' = u ( + - 2 + a ( 1 - ~ a ) a - 4 + u ( l - a + ~ a 2 ) ( + - 6 +  . . . , ( a  = 8 In 2),  (13) 
whereupon comparison with (2) shows that not even the dominant ( d +  CO) behaviour 
is given correctly. Indeed it appears to have escaped prior notice that the conjectured 
value (12) violates the rigorous inequality p:B' 3 U-' for d a 4. (The inequality follows 
by combining the rigorous inequality p:"Z p-' (Broadbent and Hammersley 1957) 
with the rigorous but trivial inequality p S q - 1 = (+ for the self-avoiding walk limit p.) 

So far, all of the approximations we have discussed have been for the bond 
percolation threshold. The only analogous expression known to us for site percolation 
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is the empirical formula 

6LS’=d(2d-1)-’ (d- l ) - ’  

for simple hypercubic lattices with d 2 3 due to Sahimi et a1 (1983). Expanding in l /a 
gives the (convergent) expansion 

CL’’= a- ’+2a-2+2a-3+2a-4+ . . . .  (15) 

Comparison with (1) shows that the dominant behaviour is given correctly, as is the 
order of the leading correction term-but not its magnitude. For the relative percentage 
error we find using (1) and (15) that ($L’)-p:’))/pL’’= 5 0 6 ’  for large d. This is much 
worse than 5 0 0 - ~  resulting from the approximation of Sahimi e? a1 and which (as seen 
earlier) is the best large d result for bond percolation. 

To summarise, we  have used l/a-expansions to  investigate a number of conjectures 
and approximations for the bond and site percolation thresholds of d-dimensional 
simple hypercubic lattices. The technique demonstrates quite convincingly that none 
of the conjectures are exact and gives a clear and quantitative understanding as regards 
the quality of the approximations. Clearly it is not limited to the percolation problem 
but may be applied to any of the problems for which l/a-expansions are available. 
In all cases, we strongly recommend the early application of this technique to the 
examination of potential conjectures and the assessment of likely approximations. 
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